
14
Microcontrollers

Microcontrollers are hidden inside almost every product or device with which its user can interact. In
fact, any device that has a remote control or has an LED/LCD screen and a keypad has an embedded
microcontroller. Some common products where one is sure to find the use of a microcontroller include
automobiles, microwave ovens, TVs, VCRs, high-end stereo systems, camcorders, digital cameras,
washing machines, laser printers, telephone sets with caller ID facility, mobile phones, refrigerators
and so on. This chapter focuses on microcontroller fundamentals and the application-related aspects of
it. Beginning with an introductory description of the device, with particular reference to its comparison
with a microprocessor, the chapter covers the general architecture and the criteria to be followed to
choose the right device for a given application. This is followed by application-relevant information,
such as salient features, pin configuration, internal architecture, etc., of popular brands of eight-bit,
16-bit, 32-bit and 64-bit microcontrollers from major international manufacturers. Intel’s 8051 family
of microcontrollers is described in more detail.

14.1 Introduction to the Microcontroller
The microcontroller may be considered as a specialized computer-on-a-chip or a single-chip computer.
The word ‘micro’ suggests that the device is small, and the word ‘controller’ suggests that the
device may be used to control one or more functions of objects, processes or events. It is also
called an embedded controller as microcontrollers are often embedded in the device or system that
they control.

The microcontroller contains a simplified processor, some memory (RAM and ROM), I/O ports
and peripheral devices such as counters/timers, analogue-to-digital converters, etc., all integrated on a
single chip. It is this feature of the processor and peripheral components available on a single chip that
distinguishes it from a microprocessor-based system. A microprocessor is nothing but a processing

Digital Electronics: Principles, Devices and Applications Anil K. Maini
© 2007 John Wiley & Sons, Ltd. ISBN: 978-0-470-03214-5



566 Digital Electronics

ROM

Microprocessor

EEPROM

RAM

Input
and

Output
Ports

Serial
I/O

Parallel
I/O

Timer

PWM

Input
and

Output
Ports

A/D
Converter

D/A
Converter

(a)

ROM EEPROM

RAM

Serial
I/O

Parallel
I/O

Timer

PWM

A/D
Converter

CPU
Core

Microcontroller

(b)

Figure 14.1 Microprocessor versus microcontroller: (a) microprocessor configuration; (b) microcontroller
configuration.

unit with some general-purpose registers. A microprocessor-based system also has RAM, ROM, I/O
ports and other peripheral devices to make it a complete functional unit, but all these components
are external to the microprocessor chip. While a microprocessor-based system is a general-purpose
system that may be programmed to do any of the large number of functions it is capable of doing,



Microcontrollers 567

microcontrollers are dedicated to one task and run one specific program. This program is stored in
ROM and generally does not change.

Figure 14.1 further illustrates the basic difference between a microprocessor-based system and
a microcontroller. As is evident from the two block schematics shown in the figure, while a
microprocessor-based system needs additional chips to make it a functional unit, in a microcontroller
the functions of all these additional chips are integrated on the same chip.

14.1.1 Applications

Microcontrollers are embedded inside a surprisingly large number of product categories including
automobiles, entertainment and consumer products, test and measurement equipment and desktop
computers, to name some prominent ones.

Any device or system that measures, stores, controls, calculates or displays information is sure
to have an embedded microcontroller as a part of the device or system. In automobiles, one or
more microcontrollers may be used for engine control, car cruise control (Fig. 14.2), antilock brakes
and so on. Test and measurement equipment such as signal generators, multimeters, frequency
counters, oscilloscopes, etc., make use of microcontrollers to add features such as the ability to store
measurements, to display messages and waveforms and to create and store user routines. In desktop
computers, microcontrollers are used in peripheral devices such as keyboards, printers, modems, etc.
Consumer and entertainment products such as TVs, video recorders, camcorders, microwave ovens,
washing machines, telephones with caller ID facility, cellular phones, air conditioners, refrigerators
and many more products make extensive use of microcontrollers to add new control and functional
features.

14.2 Inside the Microcontroller
Figure 14.3 shows the block schematic arrangement of various components of a microcontroller. As
outlined earlier, a microcontroller is an integrated chip with an on-chip CPU, memory, I/O ports and
some peripheral devices to make a complete functional unit. A typical microcontroller as depicted in
Fig. 14.4 has the following components: a central processing unit (CPU), a random access memory
(RAM), a read only memory (ROM), special-function registers and peripheral components including
serial and/or parallel ports, timers and counters, analogue-to-digital (A/D) converters and digital-to-
analogue (D/A) converters.

Timer

Control

Set
Speed

D/A
Converter

Display

Throttle

Figure 14.2 Microcontroller-based car cruise control.



568 Digital Electronics

A/D
Converter

D/A
Converter

Parallel
Ports

Serial
Ports

Counters/
Timers

Central
Processing

Unit

Memory

SFRs

From
Sensors

To Actuators

Keyboard,
Displays

etc.

Figure 14.3 Inside the microcontroller.

Clock
Free-Running

Counter

Timer Input
System

Timer Output
System

Figure 14.4 Timer subsystem.

14.2.1 Central Processing Unit (CPU)

The central processing unit processes the program. It executes the instructions stored in the program
memory pointed to by the program counter in synchronization with the clock signal. The processor
complexity could vary from simple eight-bit processors to sophisticated 32-bit or even 64-bit processors.
Some common microcontrollers using eight-bit processors include 68HC11 (Freescale Semiconductor
– earlier part of Motorola), the 80C51 family of microcontrollers (Intel and Dallas Semiconductor),
Zilog-eZ8 and Zilog-eZ80 (Zilog) and XC800 (Infineon). Examples of microcontrollers using 16-bit
processors include the 8096 family (Intel), 68HC12 and 68HC16 (Freescale Semiconductor), the
F2MC family (Fujitsu) and the XC166 family (Infineon). Examples of microcontrollers using 32-
bit processors include 683XX, MPC 860 (PowerQUICC), MPC 8240/8250 (PowerQUICC-II) and
MPC 8540/8555/8560 (PowerQUICC-III) (all from Freescale Semiconductor), the TRICORE family
(Infineon) and the FR/FR-V family (Fujitsu).



Microcontrollers 569

14.2.2 Random Access Memory (RAM)

RAM is used to hold intermediate results and other temporary data during the execution of the program.
Typically, microcontrollers have a few hundreds of bytes of RAM. As an example, microcontroller
type numbers 8XC51/80C31, 8XC52/80C32 and 68HC12 respectively have 128, 256 and 1024 bytes
of RAM.

14.2.3 Read Only Memory (ROM)

ROM holds the program instructions and the constant data. Microcontrollers use one or more of
the following memory types for this purpose: ROM (mask-programmed ROM), PROM (one-time
programmable ROM, which is not field programmable), EPROM (field programmable and usually
UV erasable), EEPROM (field programmable, electrically erasable, byte erasable) and flash (similar to
EEPROM technology). Microcontroller type numbers 8XC51, 8XC51FA and 8XC52 have 4K, 8K and
16K of ROM. As another example, the 68HC12 16-bit microcontroller has 32K of flash EEPROM,
768 bytes of EEPROM and 2K of erase-protected boot block.

14.2.4 Special-Function Registers

Special-function registers control various functions of a microcontroller. There are two categories of
these registers. The first type includes those registers that are wired into the CPU and do not necessarily
form part of addressable memory. These registers are used to control program flow and arithmetic
functions. Examples include status register, program counter, stack pointer, etc. These registers are,
however, taken care of by compilers of high-level languages, and therefore programmers of high-level
languages such as C, Pascal, etc., do not need to worry about them. The other category of registers is the
one that is required by peripheral components. The contents of these registers could, for instance, set
a timer or enable serial communication and so on. As an example, special-function registers available
on the 80C51 family of microcontrollers (80C51, 87C51, 80C31) include a program counter, stack
pointer, RAM address register, program address register and PC incrementer.

14.2.5 Peripheral Components

Peripheral components such as analogue-to-digital converters, I/O ports, timers and counters, etc., are
available on the majority of microcontrollers. These components perform functions as suggested by
their respective names. In addition to these, microcontrollers intended for some specific or relatively
more complex functions come with many more on-chip peripherals. Some of the common ones
include the pulse width modulator, serial communication interface (SCI), serial peripheral interface
(SPI), interintegrated circuit (I2C) two-wire communication interface, RS 232 (UART) port, infrared
port (IrDA), USB port, controller area network (CAN) and local interconnect network (LIN). These
peripheral devices are briefly described in the following paragraphs.

14.2.5.1 Analogue-to-Digital Converters

Analogue-to-digital and digital-to-analogue converters provide an interface with analogue devices. For
example, the analogue-to-digital converter provides an interface between the microcontroller and the
sensors that produce analogue electrical equivalents of the actual physical parameters to be controlled.



570 Digital Electronics

The digital-to-analogue converter, on the other hand, provides an interface between the microcontroller
and the actuators that provide the control function. As an example, both 68HC11 and 68HC12 from
Freescale Semiconductor have eight-channel, eight-bit analogue-to-digital converters. The digital-
to-analogue converter function in microcontrollers is provided by a combination of pulse width
modulator (PWM) followed by a filter. As an example, 68HC12 has an on-chip 16-bit/two-channel
PWM. Analogue-to-digital and digital-to-analogue converters are discussed at length in Chapter 12.

14.2.5.2 I/O Ports

I/O ports provide an interface between the microcontroller and the peripheral I/O devices such
as the keyboard, display, etc. The 80C51 family of microcontrollers has four eight-bit I/O ports.
Microcontroller 68HC11 offers 38 general-purpose I/O pins including 16 bidirectional I/O pins, 11
input-only pins and 11 output-only pins.

14.2.5.3 Counters/Timers

Counters/timers usually perform the following three functions. They are used to keep time and/or
measure the time interval between events, count the number of events and generate baud rates for
the serial ports. Microcontroller 68HC11 has a 16-bit timer system comprising three input capture
channels, four output compare channels and one additional channel that can be configured as either an
input or an output channel. Another popular microcontroller type number, PIC 16F84, has an eight-bit
timer/counter with an eight-bit prescaler.

Figure 14.4 shows a generalized block schematic representation of the timer subsystem of a
microcontroller. The clock signal controls all timing activities of the microcontroller. The counter is
used both to capture external timing events (accomplished by the timer input block) and to generate
timing events for external devices (accomplished by the timer output block). While the former process
is typically used to measure the frequency and time interval of periodic signals, the latter generates
control signals for external devices.

It may be mentioned here that a timing event to be captured or generated is nothing but a change
in logic status on one of the microcontroller I/O pins configured as an input pin if the event is to be
captured and as an output pin if it is to be generated. Figure 14.5 shows a block schematic arrangement
of the timer input block of Fig. 14.4. As shown in the figure, the counter captures the input time
event in the form of its contents at the time of occurrence of the event. In fact, the counter captures
the relative time of the event as the counter is free running. Absolute timing values can be computed
from the relative system clock values. As an example, consider a microcontroller with a 10 MHz
clock and a 16-bit counter/timer subsystem. This counter will take 6.5536 ms to count from 0000 to
FFFF (hex notation). Let us assume that it is desired to find the frequency of a periodic signal whose
successive rising or falling edges are observed to occur at 0010 and 0150. 0010 and 0150 respectively
correspond to 16 and 336 in decimal. Therefore, the time interval between two successive edges equals
320 ×0.1 = 32 �s. The signal frequency is therefore (1/32) MHz = 31.25 kHz.

Figure 14.6 shows a block schematic arrangement of the timer output block of Fig. 14.4. The diagram
is self-explanatory. Again, free-running counter values can be used to synchronize the time of the
desired logic state changes on the output pin. This feature can also be used to generate an aperiodic
pulse or a periodic signal of any desired duty cycle.

For timer input and output operations, the microcontroller needs to set up some special registers.
For timer input operation, as shown in Fig. 14.5, registers are required to program the event (logic
HIGH or logic LOW), configure the physical I/O pin as an input pin and also set up parameters for the



Microcontrollers 571

Special
Storage

Regsister

Free-Running
Counter

Programmed
Event

I/O
Pin

Timer Input
Flag

Timer Input
Interrupt
System

Input

Figure 14.5 Timer input subsystem.

Special
Storage
Register

Timer Output
Flag

Timer Input
Interrupt
System

Comparator

Programmed
Event

I/O
Pin

Output

Free-Running
Counter

Figure 14.6 Timer output subsystem.

related interrupt, if used. Another register is used to capture the counter value at the time of occurrence
of the event. For time output operation, as shown in Fig. 14.6, the physical I/O pin is to be configured
as an output pin, the event is to be programmed and the timing value is to be set in the special register
to tell when the programmed event should appear on the output pin. The output timer system also has
an associated interrupt that can be utilized if needed.

14.2.5.4 Serial Communication Interfaces

There are two types of serial communication interface, namely the asynchronous communication
interface and the synchronous communication interface. The asynchronous communication interface
uses a start and stop bit protocol to synchronize the transmitter and receiver. Start and stop bits



572 Digital Electronics

are embedded in each data byte. Compared with the synchronous communication interface, it offers
lower data transmission rates. It is also referred to as the universal asynchronous receiver/transmitter
(UART) or the serial communication interface (SCI). The synchronous communication interface uses
a synchronized clock to transmit and receive each bit. Synchronization of transmitter and receiver
clocks is usually accomplished by using an additional clock line linking the transmitter and the
receiver. It is not recommended for long distance communication. It is also referred to as the serial
peripheral interface (SPI). Microcontroller 68HC11 offers an asynchronous non-return-to-zero serial
communication interface and also a synchronous serial peripheral interface. The 80C51 family of
microcontrollers offers a full duplex-enhanced UART interface.

Since a large number of peripheral devices are equipped to communicate with an RS-232-compatible
interface, which is a serial interface standard that specifies the different aspects, including electrical,
mechanical, functional and procedural specifications, a variety of chips are available to translate
microcontroller signals to RS-232-compatible signals. These chips are equipped to provide interfacing
for a two-way communication system.

14.2.5.5 Interintegrated Circuit (I2C) Bus

The interintegrated circuit (I2C) bus is a two-wire, low- to-medium-speed serial communication
interface developed by Philips Semiconductors in the early 1980s for chip-to-chip communications.
The two wires in the I2C bus are called clock (SCL) and data (SDA). The SDA wire carries data, while
the SCL wire synchronizes the transmitter and receiver during data transfer.

It is a proven industry-standard communication protocol used in a variety of electronic products,
which is particularly facilitated by its low cost and powerful features. It is supported by a large number
of semiconductor and system manufacturers who offer a variety of electronic products including input
and output devices, different types of sensor, memory devices, displays, data entry devices, etc. Some
of the important features offered by I2C devices are briefly described in the following paragraphs.

I2C devices offer master–slave hierarchy. These are classified as either master (the device that initiates
the message) or slave (the device that responds to the message). The device can be either master only or
slave only or can be switched between master and slave depending upon the application requirement.
One possible master–slave configuration is the one where one master (e.g. a microcontroller) is
connected to many chips configured as slaves, as shown in Fig. 14.7. Each of the I2C slave devices is

Microcontroller
(Master)

SCL

Slave
(1)

SDA

Slave
(2)

Slave
(3)

Slave
(n)

Memory Clock Keypad Display

SCL-Line

SDA-Line

Figure 14.7 Master–slave configuration – one I2C master and multiple slaves.



Microcontrollers 573

Microcontroller
Master (1)

SCL

Slave
(1)

SDA

Slave
(2) Master-Slave

(1)

Slave
(n)

SCL-Line

SDA-Line

Master-Slave
(2)

Figure 14.8 Master–slave configuration – multiple-master support arrangement.

identifiable by a unique address. When the master device sends a message, it includes the address of
the intended slave device at the beginning of the message.

The I2C interface also supports multiple master devices at the same time. The bus has a special
feature that allows it to resolve signal conflicts should two or more master devices try to talk on the
bus at the same time. A master I2C device that detects the conflict, called arbitration loss, terminates
its use of the bus, thus allowing the message sent by another master to cross the bus unharmed. Figure
14.8 shows one such multimaster support arrangement.

14.2.5.6 Controller Area Network (CAN) Bus

The controller area network (CAN) bus is a rugged serial communication interface used in a broad
range of embedded as well as automation control applications. It was introduced by Bosch in 1986
for in-vehicle networks in automobiles. The CAN protocol was internationally standardized in 1993
as ISO-11898-1 and comprises the data link layer of the seven-layer ISO/OSI reference model. The
protocol provides two communication services, namely data frame transmission (sending of a message)
and remote transmission request (requesting of a message). All other services such as error signalling,
automatic retransmission of erroneous frames, etc., are performed by CAN chips. Some of the important
features of the CAN protocol include the following. It provides a multimaster hierarchy. This allows
the user to build intelligent and redundant systems. It uses the broadcast communication method. The
sender of a message transmits to all devices connected to the bus. All devices read the message and
decode it if it is intended for them. This feature guarantees data integrity. Data integrity is also ensured
by error detection mechanisms and automatic retransmission of faulty messages.

CAN protocol provides low-speed fault-tolerant transmission at a rate of 125 kbps up to a distance
of 40 m, which can function over one wire if there is a short. Transmission without fault tolerance is
provided at a rate of 1 Mbps up to a distance of 40 m. Transmission rates of 50 kbps are achievable
up to a distance of 1 km.

14.2.5.7 Local Interconnect Network (LIN) Bus

The local interconnect network (LIN) bus is a broadcast serial network that is used as a low-cost
subnetwork of a CAN bus to integrate intelligent sensors or actuators in modern automobiles. It



574 Digital Electronics

comprises one master (typically a moderately powerful microcontroller) and up to 16 slaves (less
powerful, cheaper microcontrollers or ASICs). It does not offer a collision detection feature and
therefore all messages are initiated by the master with at the most one slave replying to a given message
identifier. Multiple such LIN networks may all be linked to a CAN upper layer network through their
respective masters.

Example 14.1

A certain microcontroller has an on-chip 16-bit counter/timer system. It is used to measure the width
of an input pulse. The microcontroller has been programmed to measure the time of occurrence of
rising and falling edges of an input pulse on a certain I/O pin. If the microcontroller uses an 8 MHz
clock and the count values observed at the time of occurrence of rising and falling edges of the input
pulse are 001F and 00F1 (in hex), determine the pulse width as measured by the microcontroller.

Solution
• Since the microcontroller uses a 16-bit counter, it counts from 0000 to FFFF (in hex) or 0 to 65536

in decimal.
• The rising edge of the input pulse occurs at 001F, the decimal equivalent of which is 31.
• The falling edge occurs at 00F1, the decimal equivalent of which is 241.
• Therefore, the input pulse width accounts for 241 − 31 = 210 clock cycles.
• The clock signal time period = 1/8 = 0.125 �s.
• Therefore, the time period corresponding to 210 cycles = 210 × 0.125 = 26.25 �s.
• The pulse width measured by the microcontroller = 26.25 �s.

Example 14.2

It is desired to design a microcontroller-based periodic signal generator with minimum and maximum
time period specifications of 125 ns and 100 ms. What should the system clock frequency be?

Solution
• The minimum time period that can be generated by the microcontroller equals the time period

corresponding to one clock cycle.
• Therefore, one clock cycle time period = 125 ns.
• The clock frequency = 1/125 GHz = 1000/125 MHz = 8 MHz.

14.3 Microcontroller Architecture
Microcontroller architecture may be defined in several ways. These include architecture used by the
processor to access memory, architecture used for mapping special-function registers into memory
space and the processor architecture itself.

14.3.1 Architecture to Access Memory

There are two fundamental architectures used by the processing units to access memory, namely Von
Neumann architecture and Harvard architecture.



Microcontrollers 575

CentralProcessingUnit

Memory

Figure 14.9 Von Neumann architecture.

Von Neumann architecture uses a single memory to hold both program instructions and data. There
is one common data and address bus between processor and memory (Fig. 14.9). Instructions and data
are fetched in sequential order, thus limiting the operation data transfer rate or the throughput. This
phenomenon is commonly referred to as the Von Neumann bottleneck. The throughput is very small
compared with the size of the memory. In present-day machines, the throughput is also very small
compared with the rate at which the processor itself can work. In the condition where the processor
is required to perform minimal processing on large amounts of data, the processor is forced to wait
for vital data to be transferred from or to memory. Microcontroller type number 68HC11 uses Von
Neumann architecture.

Harvard architecture uses physically separate memories for program instructions and data. It
therefore requires separate buses for program and data, as shown in Fig. 14.10. In such architecture,
instructions and operands can be fetched simultaneously, which makes microcontrollers using this
architecture much faster compared with the ones using Von Neumann architecture. Also, different
data and program bus widths are possible, which allows the program and data memory to be better
optimized to architectural requirements. In fact, the word width, timing, implementation technology
and memory address structure can be different in the two cases. Program memory is usually much
larger than data memory, which implies that the address bus for the program memory is wider than
the address bus for the data memory.

Central Processing Unit

Data
Memory

Program
Memory

Figure 14.10 Harvard architecture.


